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ABSTRACT: Complete, reproducible extraction of protein material is essential SP3  Proteinsample SP4 | TVT-auantifed proteins (n=5076):
. k . Single-Pot, Solid-Phase- Ivent Precipitation Relative protein recovery
for comprehensive and unbiased proteome analyses. A current gold standard is ~ giancedseme®e s
on M

single-pot, solid-phase-enhanced sample preparation (SP3), in which organic
solvent and magnetic beads are used to denature and capture protein
aggregates, with subsequent washes removing contaminants. However, SP3 is
dependent on effective protein immobilization onto beads, risks losses during ~ 5min ¥
wash steps, and exhibits losses and greater costs at higher protein inputs. Here, '
we propose solvent precipitation SP3 (SP4) as an alternative to SP3 protein
cleanup, capturing acetonitrile-induced protein aggregates by brief centrifuga-

tion rather than magnetism—with optional low-cost inert glass beads to ce‘ﬁf’v‘ivuganon @
simplify handling. SP4 recovered equivalent or greater protein yields for 1—  Magneticisolation | [ Centrifugation ] proteins '

[3x 2 min washes, 2-18 h digestion, 5 min peptide isolation |
v

5000 pg preparations and improved reproducibility (median protein R* 0.99 e
(SP4) vs 0.97 (SP3)). Deep proteome profiling revealed that SP4 yielded a

greater recovery of low-solubility and transmembrane proteins than SP3, benefits to aggregating protein using 80 vs 50% organic
solvent, and equivalent recovery by SP4 and S-Trap. SP4 was verified in three other labs across eight sample types and five lysis
buffers—all confirming equivalent or improved proteome characterization vs SP3. With near-identical recovery, this work further
illustrates protein precipitation as the primary mechanism of SP3 protein cleanup and identifies that magnetic capture risks losses,
especially at higher protein concentrations and among more hydrophobic proteins. SP4 ofters a minimalistic approach to protein
cleanup that provides cost-effective input scalability, the option to omit beads entirely, and suggests important considerations for SP3
applications—all while retaining the speed and compatibility of SP3.
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H INTRODUCTION beads, if aggregates are disrupted during wash steps, or if
technical steps are not followed carefully.” Larger protein
inputs (e.g,, for enrichment of post-translational modifications
(PTMs)) are also disadvantaged by counter-intuitive losses
and bead costs.”'' Furthermore, CMMBs present a physical
contamination risk and the potential to bind protease
inhibitors."*

Although the mechanism of SP3 was originally proposed to
involve hydrophilic interaction chromatography (HILIC)-like
solid-phase interaction between CMMBs and proteins, Batth et
al. recently demonstrated that protein recovery for SP3 is not
dependent on bead surface chemistry.'” Their work suggests
that HILIC-like interactions are not the primary form of solid-
phase bead—protein interactions. Instead, the authors
described the SP3 mechanism as protein aggregation capture

Proteomics experiments typically aim to characterize compre-
hensively all proteins present in a given sample." Extraction of
protein material from complex biological mixtures generally
requires use of buffers containing components incompatible
with several stages of proteomics analysis (e.g, detergents,
salts).” Although several cleanup methods exist,” ° contami-
nant removal represents a major source of sample losses and
experimental variability.”

An increasingly popular sample preparation method is SP3
(single-pot, solid-phase-enhanced sample preparation), em-
ploying a single reaction vessel, carboxylate-modified magnetic
beads (CMMBs), and organic solvent-induced protein
aggregation to wash away contaminants.”*~'% SP3 is a fast,
effective, high-throughput, and relatively streamlined proto-
col—compatible with automation and a range of protein
inputs, with diverse proteomics applications.”"' ™' Improve- Received:  September 27, 2021
ments on the initially proposed protein cleanup method Accepted:  June 26, 2022
include neutral pH, solvent adjustments, and a more rapid Published: July 18, 2022
workflow taking around 90 min from cells to peptides.”' "'

However, SP3 has the potential for losses and variability, e.g,,
if protein aggregates do not completely adhere to magnetic
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(PAC), driven by organic solvent-induced denaturation. PAC,
and therefore SP3, bear a striking mechanistic similarity to
protein precipitation—a well-established purification approach
that typically employs organic solvents to induce protein
denaturation and precipitation into insoluble aggregates.
However, protein precipitation has historically been associated
with extended incubation steps, incomplete protein capture,
and chemical modification of proteins and/or peptides.'” ™'
Nevertheless, several recent methods have demonstrated that
combining protein precipitation with filter-based trappin%
provides a rapid means of protein capture and cleanup.”” >
The importance of ionic strength (>10 mM NaCl) was
demonstrated to be essential for protein precipitation, allowing
the reaction to complete in as little as 2 min.”

Building upon the SP3 developments of Batth et al.,'* here
we omit magnetic beads entirely and instead employ
acetonitrile (ACN)-induced protein precipitation and cen-
trifugation for protein capture and isolation—either bead-free
(BF), or with low-cost, inert glass beads (GB). We name this
method SP4 or Solvent Precipitation SP3. Both SP4 variants
matched or outperformed SP3 across a variety of applications
and settings, with SP4-GB offering technical advantages and
some higher recovery than SP4-BF. SP4 also yielded equivalent
results to S-Trap. We provide further evidence that protein
precipitation is the primary mechanism of SP3 protein
enrichment. We therefore propose that CMMBs, while
advantageous in sg)eciﬁc settings (e, peptide fractionation
and automation'*~'°), can be replaced with inert glass beads—
or omitted altogether—without adversely affecting proteome
recovery, provided protein input and concentration are
sufficiently high (>1 pg and >0.25 pg/uL, respectively).
Furthermore, magnetic capture in SP3 increased the risk of
protein aggregate losses—especially of low-solubility (eg.,
membrane) proteins and at higher protein concentrations. SP4
offers a minimalistic, low-cost protein cleanup approach
(especially for high-input preparations, eg, prior to PTM
analyses), is easy to use for non-proteomics scientists, requires
no specialized equipment or reagents, offers the option to omit
beads entirely, and improves recovery of hydrophobic
proteins—while retaining the speed and broad compatibility
of SP3.

B METHODS

SP3/SP4 Preparations. Full methods and materials are
provided in the Supporting Information, alongside a detailed
step-by-step protocol. HEK293 cells were lysed using
trituration in “SP3 lysis buffer” (50 mM HEPES pH 8.0, 1%
SDS, 1% Triton X-100, 1% NP-40, 1% Tween 20, 1% sodium
deoxycholate, S0 mM NaCl, S mM EDTA, 1% (v/v) glycerol)
supplemented with 10 mM DTT, 1X cOmplete protease
inhibitor, and 40 mM 2-chloroacetamide, followed by heating
at 95 °C for S min and sonication on ice for 12 X S s bursts.
Lysates were adjusted to S pg/uL. Silica beads/glass spheres
(9-13 um mean particle diameter; Sigma catalogue no.
44034S) were suspended at an initial concentration of 100
mg/mL in Milli-Q water, washed sequentially with ACN, 100
mM ammonium bicarbonate (ABC), and 2X with water,
pelleted at 16,000g for 1 min, and the supernatant was
discarded (also removing any unpelleted beads). Glass beads
were adjusted to a final concentration of 50 mg/mL in water or
12.5 mg/mL in ACN. A 10:1 bead/protein ratio for SP3 and
SP4-GB, or an equivalent volume of water for SP4-BF
experiments, was added to lysates and gently mixed at 400

rpm. Then, 4 volumes of 100% ACN was added, and tubes
were mixed for S s at 400 rpm. Alternatively, glass beads were
added to lysate presuspended in ACN. SP3 samples were
incubated at 25 °C for S min at 800 rpm on a Thermomixer
Comfort and placed on a magnetic rack for 2 min. SP4 samples
were centrifuged for 5 min at 16,000g. Supernatants were
aspirated and carefully washed 3X with 80% ethanol. Each
wash used either a 2-min magnetic separation (SP3) or 2-min
centrifugation at 16,000g (SP4, cSP3). Protein aggregates were
digested with 1:100 trypsin:protein ratio in 100 mM ABC for
18 h at 37 °C at 1000 rpm on a Thermomixer Comfort. For
TMT labeling, 100 ug of protein was processed, and 100 mM
triethylammonium bicarbonate (TEAB) with 1:100 trypsin
and Lys-C were added. Peptide solutions were isolated by
removal of magnetic beads (MagRack and 16,000g, SP3) or
beads and insoluble debris (16,000, SP4) for 2 min. Peptide
yields for optimization were assessed using the Pierce
Quantitative Fluorometric Peptide Assay (Thermo Scientific)
according to the manufacturer’s instructions. After digestion,
peptides were acidified with 2% ACN and 0.1% trifluoroacetic
acid and were sufficiently clean for LC-MS injection.

S-Trap, Spin Filter, and SP4 Protein Cleanup. HEK293
lysate was prepared with 5% SDS and 50 mM TEAB as
recommended by the S-Trap mini protocol. Briefly, 100 pg of
the same lysate was processed for all samples (n = 4, label-free;
n = 2, TMT). For S-Trap, the manufacturer’s recommended
protocol was followed for mini columns. For spin filtration, a
nylon 0.22 pm spin filter was used to capture the precipitate.
For SP4-GB, the protein was precipitated with an ACN—bead
suspension, and the described SP4 protocol was followed.
Digests were performed with S pg of trypsin and 2 ug of Lys-C
in 125 uL of S0 mM TEAB for 2 h. Peptide solutions were
lyophilized and reconstituted in 100 uL of 100 mM TEAB.

TMT Labeling and Peptide Fractionation. Briefly, 100
ug of peptides were labeled with 0.2 mg of TMT labeling
reagent according to the manufacturer’s instructions. Labeled
peptides were vacuum-concentrated, then reconstituted,
pooled, and resolved using high-pH RP C18 chromatography
over a 105-min gradient.

LC-MS Acquisition and Analysis. Label-free analyses of
peptides were acquired over 120 min by a Q-Exactive Plus
Orbitrap MS (Thermo Scientific) from 100 ng of peptides (as
a proportion of protein input). TMT-labeled peptide fractions
were analyzed over 60 or 120 min by an Orbitrap Eclipse MS
(Thermo Scientific) using SPS MS®> mode. Raw files were
processed and analyzed with Proteome Discoverer 2.5,
searching against UniProt Swiss-Prot (version 2021 01,
canonical). Additional analysis was performed in Microsoft
Excel. The MS proteomics data have been deposited to the
ProteomeXchange Consortium (http://proteomecentral.
proteomexchange.org) via the PRIDE partner repository26
with the data set identifier PXD032095 and, for validation
work, PXD028736 and PXDO028768. Proteomics data are
detailed in Tables S1—S20. Annotation enrichment was
performed with DAVID and PANTHER. Additional analyses
were performed with CamSol,>” the PROMPT tool,*® and
Proteome—pI.29

B RESULTS

Single-Pot Solvent Precipitation with Acetonitrile
Provides Effective Protein Capture and Cleanup.
Building on previous mechanistic observations of SP3, we
wanted to explore further the hypothesis that protein capture

https://doi.org/10.1021/acs.analchem.1c04200
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Figure 1. Comparison of SP3 with SP4. (A) Summary of the SP3 and SP4 workflows. For both approaches, protein in solution is aggregated with
acetonitrile in the presence of carboxylate-modified magnetic beads (SP3), glass beads (SP4-GB), or bead-free (SP4-BF), captured by magnetism
(SP3) or centrifugation (SP4), and contaminants removed with 3 washes prior to protein digestion—yielding peptides sufficiently clean for LC-MS
injection. (B) Protein and peptide identifications and peptide coefficient of variance (CV) (as violin plots; thick line—median, thin lines—quartiles)
for 1—5000 pg preparations of HEK293 cell lysate by SP3, SP4-BF, and SP4-GB (n = 4). Protein concentrations were 0.25 pg/uL for 1 and 10 ug
(in 4 and 40 pL) and 2.5 pg/uL for 100, S00, and 5000 ug (in 40, 200 and 2000 xL). A 10:1 bead:protein ratio was used in all SP3 and SP4-GB
experiments. '500 and S000 pg preparations were digested with TrypZean instead of MS-grade trypsin. (C) Aliquots of 10 ug of protein processed
with carboxylate-modified magnetic beads and captured by either standard magnetic capture (SP3) or centrifugal (16,000g) SP3 (cSP3) (D)
Aliquots of 1 pg of protein preparations processed at 0.025 and 0.25 ug/uL. (E) Aliquots of SO ug of protein precipitated in the presence of S00 pg
(10:1) of glass beads, offering increased pellet visibility and definition vs bead-free precipitation. Bar charts present median and standard deviation,
with significance assessed by ANOVA (B, D) and t-test (C). Protein coefficients of variance distributions represented by violin plots (thick line—
median, thin lines—quartiles). *p < 0.0S, **p < 0.01, **¥p < 0.001, ****p < 0.0001, and ns—not significant.

observed in SP3 is primarily a product of solvent-induced for proteomics (Figures 1A and S1). The protocol was also
denaturation, aggregation, and subsequent precipitation, rather adapted to incorporate many of the recent optimizations to
than being dependent on bead surface chemistry.'”> We noticed SP3, including neutral pH, higher ACN concentration for
that 80% ACN, similar to the conditions used to aggregate aggregation, and no reconstitution of the protein—bead
proteins during SP3, is also employed in the effective exclusion aggregates.”' !
of proteins from peptidomics and metabolomics analyses We named our optimized protocol SP4, or Solvent
through precipitation—termed a protein ‘crash.”%73% As Precipitation SP3. Two variants were devised: one without
magnetic capture risks losses from incomplete, fragile, or any beads (bead-free, SP4-BF), thus relying on precipitation
disrupted aggregate adhesion, and 80% ACN effectively alone, and a second with inert, low-cost silica particles
precipitates proteins, we hypothesized that centrifugation- (hereafter termed glass beads, SP4-GB), allowing us to explore
based capture could be combined with aspects of the SP3 the role of surface area independently of bead chemistry.
protocol to provide a more effective means of sample cleanup Initially, a broad range of SP4 parameters were evaluated by
10322 https://doi.org/10.1021/acs.analchem.1c04200
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Figure 2. Deep proteome profiling comparing SP3, SP4, and other protein precipitation methods by isobaric labeling. (A) Experimental workflows
applied to compare variants of SP3, SP4, and other protein precipitation capture methods to a high depth of proteome coverage. (B) Correlation
between protein abundances for sample preparation method replicates. (C) Relative protein recovery percentages determined within each 6-plex
across method replicates (n = 2) derived from TMT quantitation values. *p < 0.0S. (D) Volcano plots indicating more effective protein recovery
(adjusted p < 0.0S and log, (fold change) > 0.5) by each of the preparation approaches. Blue crosses and numbers represent transmembrane
proteins and their proportion of the differentially recovered proteins. (E) Frequency distributions of physical properties among proteins with
significantly greater recovery (defined in (D)). Both the human UniProt Swiss-Prot (gray) and the MS-derived TMT (blue) proteomes are
displayed as percentage frequency backgrounds. See also Figure S7. (F) Cellular component GO-SLIM term enrichment analysis of proteins more
effectively isolated by each method (defined in (D)). Protein lists were combined for these analyses, e.g,, SP3/SP4 = SP3/SP4-BF and SP3/SP4-
GB.
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peptide yield, including 40-95% ACN, 0:1—160:1 glass
bead:protein ratios, and 0.5—20 min centrifugation times
(Figure S1). These experiments demonstrated that parameters
equivalent to SP3, i.e, 80% ACN, a 10:1 glass bead:protein
ratio, and S- and 2-min protein capture steps were also the
most effective for SP4—and provided peptides ready for LC-
MS without any further cleanup required. Therefore, rapid
protein aggregate capture by centrifugation-based SP4 provides
a potential option for the preparation of samples for
proteomics analysis.

Centrifugation Outperforms Magnetic Capture of
Solvent-Induced Protein Aggregates. To evaluate how
the capture of protein aggregates by centrifugation compared
with magnet- and CMMB-based SP3, 1—-5000 pg of HEK293
cell lysate was processed by SP3, SP4-BF, and SP4-GB
(Figures 1B and S2 and Tables S2—S6). Both variants of SP4
consistently either matched or exceeded the number of protein
and peptide identifications of SP3 across the range of evaluated
inputs. A mean of 3036, 3275, 3810, 2549, and 3272 proteins
were identified for the 1, 10, 100, 500, and 5000 pg input
experiments, respectively. On average, more proteins were
observed for the 1, 100, 500, and 5000 ug inputs for SP4-BF
(+569 (p < 0.05), +129, +172, (p < 0.05), and +63 proteins,
respectively) and SP4-GB (+506 (p < 0.05), +149, +350 (p <
0.01), and +114) vs SP3, with the 10 ug experiment showing
roughly equivalent protein numbers (SP3: 3281; SP4-BF:
3248; and SP4-GB: 3297, Figure 1B and Table S1). Peptide
identifications (Figure 1B) and other measures of proteome
quality (Figure S2) also consistently indicated greater or
equivalent protein recovery by SP4. Quantitative reproduci-
bility was also assessed, with coefficients of variation (CV,
Figure 1B) indicating at least equivalent or greater
reproducibility for SP4 in the 1, 10, 500, and 5000 ug
comparisons. Median protein R? values were 0.970, 0.980, and
0.993 for SP3, SP4-BF, and SP4-GB, respectively (Figure S3).
For both SP4 methods, more proteins demonstrated
significantly greater recovery (fold change (FC) > 2 and
adjusted p < 0.05) vs SP3, with SP4-GB offering additional
recovery for all inputs (Figure S4). A slight trend of greater
recovery of transmembrane proteins was apparent in these data
(Figure S4). The inclusion of glass beads also offered some
marginal increases to mean protein identifications vs SP4-BF
for the 10, 100, 500, and S000 g (49, 20, 179 (p < 0.01), and
52, respectively), alongside lower CVs in these samples. Missed
cleavages were reduced in all but the lowest input (1 ug) for
SP4-GB relative to SP3, and for all but the lowest and highest
(1 and 5000 pg) inputs relative to SP4-BF (Figure S2).

Next, to evaluate the hypothesis that some proteins were not
fully aggregating or captured by CMMBs in SP3, the SP3
protocol was performed with centrifugation in place of
magnetic capture (“cSP3”) (Figures 1C and SS5). cSP3
outperformed magnetic capture of protein—bead aggregates,
with significantly increased protein (+21S, p < 0.05) and
peptide (+1492, p < 0.01) identifications.

The previously noted'” effects of protein concentration on
SP3 and SP4 were also investigated. Recovery from 0.025 vs
0.25 pg/uL protein sample concentrations (Figure 1D)
indicated that, although the 10-fold dilution caused significant
losses in all three workflows, the losses were far greater for
SP4-BF (3246 vs 669, p < 0.0001) and SP4-GB (3184 vs 1674,
p < 0.0001) than for SP3 (2678 vs 213S proteins, p < 0.05).
Each 2-fold protein dilution indicated an approximate 15 and
20% loss of recovered peptides for SP3 and SP4, respectively

(Figure S1C). Our results highlight an important limitation of
SP4, with SP3 providing superior recovery for low-concen-
tration samples.

While the advantages of SP4-GB over SP4-BF were generally
marginal, the addition of glass beads offered several technical
advantages, most notably increasing the visibility, definition,
density, and ease of resuspension of the protein pellet (Figure
1E).

Finally, several additional aspects of SP4 were investigated,
identifying similar yields using acetone instead of ACN for
precipitation (Figure SSB), superior peptide yield at lower
centrifugation speeds (Figure SSD), and broad compatibility
with alternative, detergent-free lysis approaches such as
trifluoroacetic acid in the “Sample Preparation by Easy
Extraction and Digestion” (SPEED) protocol™® (Figure SSE)
and urea (Figure SSF).

Together, these findings suggest that centrifugation-based
protein aggregate capture by SP4 offers robust advantages over
dependence on CMMB—aggregate interactions of SP3 (except
in circumstances where protein concentration is very low) and
confirm its compatibility across a broad range of cell lysis and
aggregate-capture parameters.

Deep Proteome Profiling Identifies Superior Recov-
ery of Membrane and Low-Solubility Proteins by SP4.
To understand better the nature and mechanisms of proteins
not captured by SP3, we next evaluated the proteins recovered
by SP3 and SP4 to a higher depth by isobaric labeling and off-
line peptide fractionation (Figure 2A-i). Briefly, 100 ug of
peptides were prepared in duplicate by SP3, SP4-BF, and SP4-
GB, labeled with TMT 6-plex and characterized by two-
dimensional (2D) LC-MS/MS using synchronous precursor
selection (SPS) and MS® quantification. With this approach,
we were able to evaluate quantitatively the recovery of peptides
matching 9076 proteins.

Protein recovery had high inter- and intra-method
correlations (R* > 0.98 and 0.99, respectively) (Figures 2B
and S6), with SP4 indicating a marginally higher median
protein yield than SP3, as measured by TMT (Figure 2C).
Compared with SP3, 364 and 192 proteins had significantly
higher recovery (log,(FC) > 0.5, p < 0.05) for SP4-BF and
SP4-GB, respectively (Figure 2D-i). Only 73 proteins had a
greater recovery by SP3 vs SP4 (BF or GB). Very little
differential recovery was observed between the BF and GB SP4
variants (28 and 41 proteins, respectively). The physicochem-
ical properties of differentially recovered proteins highlighted a
significant enrichment of hydrophobic and lower-solubility
proteins (p < 0.0001) by both SP4 variants vs SP3 (Figures 2E-
i and S7). Annotation enrichment additionally identified
several terms descriptive of membrane proteins for SP4
(Figures 2F and S6), such as “membrane” (n = 221/364, p
=24 X 107°) and “intrinsic component of membrane” (n =
153/364, p = 7.9 X 107'*) (Figure S6). For SP4-BF and SP4-
GB, 40 and 47% (144/364 and 91/192) were annotated as
transmembrane proteins, respectively (Figure 2D-i, blue
crosses)—almost three times the background rate observed
by LC-MS (16%).

Given previous suggestions that lower organic conditions be
used for SP3-based aggregation,” we compared S0 vs 80%
ACN for SP3 and SP4-GB (Figure 2A-ii). This experiment
reflected the findings of the first 6-plex, with SP4 offering
greater differential recovery of proteins (411 and 367 proteins
(log,(FC) > 0.5, p < 0.05), Figure 2D-ii), transmembrane
proteins (146 and 154, Figure 2D-ii), hydrophobic proteins (p
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Figure 3. Independent method validations and complex applications of SP4 cleanup for proteomics. The SP4 protocol was provided to three
collaborators and applied to several sample types to compare SP4 with SP3. (A) Lab 1 performed SP3 with either SpeedBeads carboxylate or ReSyn
HILIC magnetic beads compared with overnight acetone (ACT(O/N)) precipitation and SP4-GB for 1, 10, and 250 ug preparations of Jurkat
human immortalized T cell lysate (n = 3). {n = 2; see Supporting Methods. (B) Acetone precipitation and SP4 were compared for 250 ug HEK293
lysate digested with trypsin +/— Lys-C. (C) Lab 2 processed 25 pg of HEK293 lysate for SP3, SP4-BF, and SP4-GB protocols. (D) Lab 3 processed
two independent n = S comparisons of SP3 and SP4-GB using S0 ug of E14 murine embryonic stem cell lysate. (E) SP3 and SP4 preparations of
more complex lysates/homogenates derived from whole organs, organisms, and formalin-fixed paraffin-embedded (FFPE) tissue. Bar charts present
median and standard deviation, with significance assessed by ANOVA (A, C) and t-test (B, D, E). Protein coefficients of variance distributions
represented by violin plot (thick line—median, thin lines—quartiles). *p < 0.0S, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns—not significant.

< 0.0001, Figures 2E-ii and S7), and “membrane”-annotated
proteins (p < 0.0001, Figure 2F-ii) vs SP3 using 80 and 50%
ACN, respectively. Importantly, these observations for SP4
held true vs SP3 at either ACN concentration and were more
pronounced when compared to 50% ACN. Losses of low-
molecular-weight and soluble proteins were apparent for the
use of 50 vs 80% ACN for SP3 (p < 0.0001, Figures 2E-ii and
S7), among those 127 proteins exhibiting significantly lower
recovery (log,(FC) > 0.5, p < 0.0S, Figure 2D-ii).

SP3 (80% ACN) demonstrated a greater recovery of lower-
than-median molecular weight proteins (52 and 98, p <
0.0001) and higher-than-median solubility proteins (56 and
114, p < 0.0001) vs SP4 in both TMT experiments (Figure 2E-
i,E-ii, respectively). However, generally, higher numbers of
lower-than-median solubility proteins (208, 116, and 255, p <
0.0001) and transmembrane proteins (144, 91, and 146) had

greater recovery for SP4-BF, SP4-GB (TMT-i) and SP4-GB
(TMT-ii), respectively, vs SP3 (Figure 2D,E).

To determine whether lower membrane protein yields in
SP3 resulted from fragile aggregates being lost during magnetic
capture, SP4-GB was compared with centrifugal SP3 (cSP3) in
a third TMT 6-plex, again using both 80 and 50% ACN for
SP3. This experiment also offered insight into the impact of
CMMB presence during precipitation, independent of the
capture method (magnetic or centrifugal). As CMMBs
appeared to offer an increased concentration of surrogate
nucleation points (Figures 1D and S1C), we attempted to
minimize this effect using a high concentration of protein ($
ug/uL)—theoretically providing ample nucleation points
across all three conditions.

cSP3 with 80% ACN matched SP4 in most measures, with
consistent median recovery (Figure 2C) and reproducibility
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(R = 0.9966 (cSP3-80%) vs 0.9941 (SP4-GB)) (Figure 2B)
and balanced differential recovery (142 (cSP3-80%) vs 213
(SP4-GB) proteins) between the methods (Figure 2D-iii).
Less than half the number of membrane proteins exhibited
losses for cSP3-80% (n = 71) (Figure 2D-iii) vs magnetic SP3
(n = 146) (Figure 2D-ii), although some enrichment for SP4-
GB remained vs cSP3.

The use of 50% ACN with cSP3 also presented greater
losses of specific proteins vs 80% ACN (n = 220, log,(FC) >
0.5, p < 0.05, Figure 2D-iii), especially those with lower
isoelectric points and molecular weights (p < 0.0001, Figures
2E-iii and S7). For all comparisons to SP3, cSP3, and SP4 (all
using 80% ACN), the use of 50% ACN resulted in the less
efficient capture of low-molecular-weight and high-solubility
proteins (Figure 2D-ii,D-iii). It is worth noting that cSP3-50%
indicated a marginally higher median total protein yield (based
on summed intensities of all TMT quantitations) relative to
SP3 and SP4 using 80% ACN (Figure 2C), but this did not
translate to a greater recovery of many specific proteins (n =
28, log,(FC) > 0.5, p < 0.0, Figure 2D-iii).

Taken together, our analysis indicates that centrifugation
offers a more effective means of aggregate capture than
magnetism, especially among membrane and other low-
solubility proteins. When protein input and concentration are
sufficient and centrifugation is an option, CMMBs can be
omitted during aggregate capture in many applications.

SP4 Matches the Performance of S-Trap. To under-
stand the performance of SP4 versus other protein cleanup
methods, a further fractionated 6-plex (Figure 2A-iv) was
employed—alongside a label-free analysis (Figure S9, n = 4)—
to compare the deep proteome (n = 8417) recoveries of
protein precipitate captured by SP4 vs two filtration-based
aggregate-capture approaches: S-Trap, and 022 pm spin
filters.””** SP4 matched S-Trap in most measures, with 265
vs 185 (S0 vs 64 transmembrane) proteins, respectively,
exhibiting significantly higher recovery (log,(FC) > 0.5, p <
0.05, Figure 2D-iv), consistent reproducibility (R* = 0.9970 vs
0.9964, Figure 2B), and a marginally higher median recovery
for SP4 (Figure 2C). For S-Trap vs SP4, protein property
distributions were skewed toward trends of higher recovery for
high-solubility proteins, lower recovery of low-molecular-
weight proteins (Figure 2E-iv), and significantly lower recovery
of “ribonucleoproteins” (n = 21/265, p = 2.0 X 1077, Figures
2F and S8). For label-free, SP4 identified significantly more
peptides than S-Trap (p < 0.05) but offered lower CVs%
(Figure S9). Spin filters exhibited significantly lower recovery
(<70% of SP4 or S-Trap, p < 0.05) and reproducibility across
both the TMT and label-free experiments (Figures 2B,C and
S9). Overall, SP4 and S-Trap appear to provide broadly similar
results, whereas the use of spin filters risks losses.

SP4 Matches or Outperforms SP3 Independent of
User and Sample Type. To confirm that SP4 was not
dependent on any single user, setting, or sample complexity,
the protocol was shared with three collaborators and applied to
lysates from several sources (Figure 3). Lab 1 found that SP4-
GB consistently performed effectively across a range of protein
inputs, matching or outperforming SP3 with two magnetic
particles (ReSyn (RS) HILIC or SpeedBeads (SB) carboxylate
beads) and overnight acetone precipitation (Figure 3A),
especially when additionally digesting with Lys-C (Figure
3B). Lab 2 prepared 25 ug of HEK293 lysate in triplicate and
found SP3, SP4-BF, and SP4-GB roughly equivalent (Figure
3C). Lab 3 compared SP3 and SP4-GB with two independent

(n = S) comparisons of 50 g of mouse E14 embryonic stem
cell lysate. For both experiments, approximately 100 more
proteins were identified by SP4-GB (p < 0.001), even though
the number of peptides did not significantly differ between
comparisons (p > 0.0S, Figure 3D). We also performed SP4 vs
SP3 on more complex samples, including lysates derived from
whole mouse organs, formalin-fixed paraffin-embedded
(FFPE) tissue preparations, and whole Drosophila melanogast-
er, to confirm the broad utility of SP4 (Figure 3E,F).
Importantly, no significant differences were observed between
the two methods (p > 0.05). These experiments further
demonstrate that the SP4 protocol consistently either matches
or outperforms SP3 independent of user, setting, or
application.

B DISCUSSION

SP3 is one of the most effective means of proteomics sample
capture and cleanup currently available. However, its reliance
on stable aggregation of proteins onto magnetic beads remains
a potential source of variability and loss. By evaluating
centrifugation of protein aggregates with SP4—with or without
glass beads—we show that losses exhibited by SP3 can be
reduced and that CMMB:s are not required for effective protein
aggregate capture for many applications. SP4 robustly offered
greater or equivalent protein and peptide identifications vs SP3
across a broad range of conditions, including 1-5000 pg of
protein input, eight sample types, five lysis buffers, and four lab
settings that use a diverse range of downstream proteomics
methods.

Generally, SP3 and SP4 provided highly comparable
proteomics options, with both offering a rapid single-pot
protein capture and cleanup protocol, broad compatibility, and
the option to elute LC-MS-ready peptides. Each method,
however, offered different advantages for protein cleanup.
While SP3 performed better at very low protein concentrations
(eg, 0.025 ug/ul, Figure 1F) and for a subset of low-
molecular-weight proteins (Figure 2E-ii.), SP4 matched or
outperformed SP3 at the higher concentrations used in this
study (0.25—5 pg/uL)—especially among proteins with low
solubility, high hydrophobicity, and transmembrane domains
(Figure 2D—F). Additionally, SP4 requires no specialized
reagents or equipment, allows rapid preparations with or
without beads, and offers low-cost, high-input scalability to
preparations beyond the recommended 300 g limit for SP3.”
SP4 therefore provides a more robust and effective means of
protein cleanup for global proteomics studies compared to
SP3, especially when a high protein concentration is available
(>0.25 pg/uL) and marginal losses to some smaller, soluble
proteins are tolerable.

In most instances, glass beads provided some (albeit limited)
improvement to proteomics outputs vs SP4-BF; however, their
most notable advantages were technical. Glass beads out-
competed tube walls as a precipitation surface, promoted a
more defined, visible, and stable precipitation pellet (Figure
1E), facilitated pellet resuspension, and offered fewer missed
cleavages (Figure S2). They also present greater chemical and
freezing compatibility and substantially lower cost (~1/
1000th) than CMMBs. When tested, SP4-GB was also found
to be compatible with 2 h digestions (Figures 2A-iv and 3D).
Presuspending the glass beads in ACN prior to sample
addition improved reproducibility and avoided dilution from
aqueous bead slurries. Glass beads therefore offer clear
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advantages over SP4-BF and may offer benefits for other
protein precipitation approaches.

Where SP4 outperformed SP3, the use of centrifugation
appears to have mitigated losses arising from dependence on
effective magnetic capture of protein—bead aggregation.
Aggregation-resistant proteins and fragile aggregates prone to
mechanical disruption would risk removal with the supernatant
and washes. This likely explains, alongside improved
reproducibility, the greater recovery by SP4 (and cSP3) of
hydrophobic and lower-solubility proteins—which exhibit a
reduced propensity for organic solvent-induced aggregation.”*
Interestingly, some marginal losses to membrane proteins
remained during cSP3 (Figure 2D-iii,E-iii), suggesting either
superior glass bead binding of hydrophobic proteins or
incomplete elution of hydrophobic peptides from CMMBs.
The higher recovery of low-molecular-weight proteins by SP3
does suggest that carboxylate chemistry may facilitate the
capture of some peptides which are less prone to
precipitation.g’o’32

At high protein concentrations, SP4 and SP3 yielded
consistent recovery across the majority of the proteome—
adding to suggestions that protein precipitation is the primary
mechanism of SP3.*"* Protein—protein and protein—CMMB
aggregation both likely derive from highly similar electrostatic
interactions of protein elements exposed by dehydration and
denaturation. This may explain the paradoxical losses observed
at higher protein inputs and concentrations for SP3>''
(Figures 1B and SIC) if protein—CMMB aggregation is
outcompeted by protein—protein aggregation, resulting in
particles that are not captured by magnetism. Conversely, at
lower protein concentrations, where nucleation points are
scarce, the rapid nature of denaturation-induced aggregation—
often termed a protein “crash”—drives finer precipitate
formation and tube-wall adhesion and perhaps explains the
low yield observed for SP4-BF (Figure 1D). CMMBs therefore
appear to alleviate the scarcity of protein—protein interaction
sites at lower concentrations by providing additional electro-
static nucleation points, thereby expediting more stable
precipitation. HILIC-type interactions may also play a role in
this process. Although glass beads also ameliorated bead-free
losses, their effect was less pronounced, perhaps due to the lack
of additional electrostatic nucleation and reliance on hydro-
phobic interactions alone, which are weaker in nature and thus
may proceed more slowly. Therefore, while protein precip-
itation appears to be the primary mechanism of protein capture
for both SP3 and SP4, CMMB and GB physicochemical
properties may offer some mechanistic divergence in the role
they provide as nucleation points, driving initial aggregate
capture more prevalently through electrostatic and hydro-
phobic interactions, respectively.

A precipitation mechanism also has implications for organic
solvent concentration selection, where higher percentages offer
greater denaturation. This was apparent among the consis-
tently lower recovery of many proteins observed with the use
of 50% ACN for both SP3 and cSP3 vs 80%, most notably for
low-molecular-weight proteins. However, there was a marginal
signature of higher global median protein yield (Figure 2C,
also noted in Figure S1), likely arising from the lower and thus
more concentrated aggregation reaction volume. This indicates
a trade-off between the improved recovery of subsets of
hydrophobic and low-molecular-weight proteins (80% ACN)
and marginally higher global yields (50% ACN). The role of
protein precipitation in SP3 also suggests that ionic strength,
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like with SP4, should be carefully considered during
aggregation.25

SP4-GB broadly matched S-Trap, offering marginally higher
yields (Figures 2C,D-iv and S9)—perhaps resulting from
losses on the additional surfaces presented by the S-Trap
protocol. S-Trap had lower variability for label-free samples
(Figure S9) but not for the TMT samples (Figure 2-iv).
Notably, SP4 eschews the specialist devices, multiple elution
steps, peptide concentration steps, multiple vessels, and buffer
restrictions of S-Trap. Importantly, our presentation of a
common mechanistic bridge between SP3 and other protein
precipitation-based methods such as S-Trap, ProTrap-XG, and
filter-aided SPEED offers several potential avenues for further
optimization and cross-adaptation of existing best practices.

Alongside limitations at low protein concentrations and the
loss of some low-molecular-weight proteins,””** SP4 does not
benefit from certain advantages oftered by CMMBs, e.g., the
options to enrich peptides or adapt for high throughput and
automation®'*~'° (although we note that SP4 was compatible
with lower centrifugation speeds more typically employed for
96-well plates (Figure SSD)).

SP4 undoubtedly has the potential for further optimization.
For example, the precipitation step could be enhanced by cold
temperatures, carefully titrated ACN concentrations, and
longer centrifugation at slower speeds. The trade-oft between
a denser aggregate pellet and the ease of resuspension for
trypsin accessibility may be worthy of further exploration
(Figure SSD), although Lys-C, rapid digestion buffers, and
higher digestions temperatures appear to be effective solutions
(Figures 2 and 3D). The type of bead is also worthy of
exploration, such as size, material, and surface chemistry.
Cheaper, non-magnetic carboxylate-modified beads used
alongside centrifugation and washes, like ¢SP3, might offer
benefits of both approaches.

B CONCLUDING REMARKS

SP4 addresses key limitations of SP3 with the use of
centrifugation and glass beads, providing a minimalistic, low-
cost protein cleanup method that offers greater or equivalent
protein yields when protein concentration and input are
sufficient. SP4 is particularly applicable to the preparation of
high-input samples (eg, for PTM preparations) and for
biology labs with limited proteomics experience and
preparation equipment. We provide further evidence that
precipitation is the primary mechanism of SP3 cleanup and
that CMMBs can be omitted from high-concentration protein
capture in many applications. We hope these findings will
extend options, improve understanding, and encourage further
development of proteomics sample cleanup methods.
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Table S1. Key measures of proteome quality outputs from label-free comparisons of SP3
with bead-free (BF) and glass bead (GB) SP4 (Summarizing Tables S2 — S8 and illustrated
in Fig 1B and S2)
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Figure S1. Evaluation of a range of SP4-related variables by peptide quantitation assay (n = 4) and
proteomics analysis. A. 10 ug of protein was processed by SP4 varying the initial and post-wash
precipitate capture centrifugation times, the glass bead to protein ratio, and the total final percentage of
ACN in the precipitation step. The digests were measured by peptide quantitation assay. B. For
proteomics analyses, 10 ug SP4 sample preparations were evaluated varying bead input and ACN
concentration with 100 ng equivalent of peptides analysed by LC-MS. Other variables were kept at either
300/120 s capture/wash centrifugation steps, 10:1 glass bead to protein ratio and 80% ACN. C. 50 pg of
protein was processed by SP3, SP4-BF and SP4-GB methods across a range of protein concentrations
representative of that of the final volume, including the volume from the bead suspension for SP3 and
SP4-GB. It was therefore possible to evaluate SP4-BF at twice the protein concentration, with no bead
addition required. The samples were subjected to SP3 and SP4 protocols, digested with trypsin in 20 mM
ammonium bicarbonate (ABC) and the resulting peptides were measured by peptide assay.
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Figure S2. Additional measure of proteome quality and protein recovery for the comparison of
SP3to SP4 with (GB) and without glass beads (bead-free, BF) across the range of evaluated
protein inputs (see also Fig 1B). PSM = peptide spectrum match.
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Figure S3. Protein and peptide LFQ R2? values of recovery for SP3 to SP4, with (GB) and without
glass beads (bead-free, BF), across the range of evaluated protein inputs (Fig 1B).
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Figure S4. Protein recovery observed to be significantly more effective by SP4 variants vs SP3,
summarized in Fig 1B. p-values determined by Proteome Discoverer with multiple-test adjusted t-test.
Blue crosses and numbers denote transmembrane proteins, with the proportion of the significantly
differentially recovery proteins (log2(FC) > 1, p < 0.05) annotated as transmembrane proteins in brackets.
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Figure S5. Additional experiments exploring the mechanism and potential of bead-free (BF) and
glass bead (GB) SP4. Protein numbers, peptide numbers, peptide CVs, oxidised peptides, and missed
cleavage rates among peptide spectrum matches are detailed for the 4 procedural replicates. A. 1 yg SP3
and SP4 preparations were conducted using two initial protein concentrations: 250 ng/uL (1 yg in 4 pL
volume, including beads) and 25 ng/uL (1 pg in 20 pL volume, including beads). B. 500 yg SP3 or SP4
preparations were conducted using acetonitrile (ACN) or acetone (ACT) as the denaturing solvent. C.
SP3 was compared with SP4 using SP3 carboxylate magnetic beads to confirm that centrifugation
recovered more protein than the use of a magnet. D. BF and GB SP4 variants were tested at 5009 (vs.
16,000g adopted in all other experiments) for the potential to expand their compatibility with larger volume
and plate-based preparations. E. Cells were lysed by 'SPEED’ (Sample Preparation by Easy Extraction
and Digestion) method using 100% TFA and neutralised with Tris base before being subjected to SP4
with the inclusion of glass beads. F. 500 ug of protein was processed by SP3 to SP4 using 8 M urea as
the lysis buffer, across a range of measures of protein recovery and proteome quality. Lysate was diluted
to 2 M urea prior to addition of beads and ACN.
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Figure S6. Measures of quantitative proteome reproducibility for comparison of SP3 and SP4

using TMT 6-plex,

summarized in Figure 2. Correlations between TMT-measured protein abundances

for sample preparations and method replicates (A.) and coefficients of variation (CV) % (B.) and total
protein abundance value distributions (C.). Data are not normalized to enable full assessment of technical
variations (correlation is therefore a better measure of consistency in this instance). Boxes denote the
direct correlations between methodological replicates. Those replicates with higher CV% are footnoted *,
T, #, and * to their corresponding R? values, demonstrating that, despite differential total recovery, this was
consistent across the whole proteome and did not indicate differential protein loss, with no reduction of

relative correlation.
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Figure S7. Frequency distributions of physical properties among proteins with significantly

derived

TMT (blue) proteomes are displayed as percentage frequency backgrounds. ANOVA followed by

greater recovery (defined in Fig 2D). Both the human UniProt Swissprot (grey) and the MS

was used to

assess significant deviation from an expected background distribution. Protein coefficients of variance
distributions represented by violin plot (thick line—median, thin lines—quartiles).

***p < 0.001, ****p < 0.0001, and ns—not significant.

identified proteins,

Dunnett’'s multiple comparisons test, compared to the TMT proteome-

*p < 0.05, *p < 0.01,
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Figure S8 — TMT i.
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Functional annotation clustering: Functional annotation terms:
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Figure S8. DAVID-derived term enrichment and clustering for those proteins observed more
significantly recovered by SP3 and SP4 by TMT quantification (Fig 2D). The human Swissprot
UniProt proteome was used as a background. See also: Fig 2F, a summary of a more concise, GO-SLIM
analysis of the cellular compartment terms for these protein subsets.
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Figure S9. A label-free comparison of proteomics preparations by SP4, S-Trap, and precipitate
capture by 0.22 um nylon spin filters. Protein (bars) and peptide (dots) identifications, protein
coefficients of variance distributions (violin plot, thick bar — median, thin bars - quartiles) and volcano plots
describing significant differential recovery for 100 pg of HEK293 lysate prepared by SP4, S-Trap, and
precipitate capture by 0.22 pm nylon spin filters. See also: Fig 2-iv, a higher-depth proteome
characterisation by TMT.

S15



Supplementary Methods

Materials. Dulbecco’s Modified Eagle Medium (DMEM), 100x pen-strep, 100x L-glutamine, 100x MEM
non-essential amino acids (NEAA), and UltraPure Tris were purchased from Invitrogen; HyClone foetal
bovine serum (FBS) from Fisher Scientific; cOmplete mini EDTA-free protease inhibitors from Roche;
BCA and peptide quantitation assays, TMT 6-plex, and LC-MS grade ACN from Thermo Scientific;
HEPES from Melford Laboratories; NP-40 from Biovision; NaCl and urea from VWR International;
glycerol, NaOH and LC-grade ACN from Fisher; SpeedBeads magnetic carboxylate modified particles
45152105050250 and 65152105050250 from Cytiva (GE Healthcare); Protein LoBind tubes from
Eppendorf; Trypsin (V5111) and Lys-C from Promega, Costar Spin-X 0.22 um nylon centrifugal filters
from Corning; and S-Trap mini columns from Protifi. All other reagents were purchased from Sigma-
Aldrich. Additional reagents used for validation are described for each lab.

Cell culture and lysis. HEK293 cells were grown in DMEM supplemented with 10% fetal bovine serum
with 1x pen-strep, L-glutamine, and NEAA, in a humidified incubator set at 37 °C and 5% CO.. Cells were
grown to 70-80% confluency and were washed twice with phosphate buffered saline. Cells were
harvested by scraping, pelleted at 300g for 5 min and snap-frozen in liquid nitrogen.

Detergent-based lysis was performed resuspending snap-frozen cell pellets in ‘SP3 lysis buffer’ (50
mM HEPES pH 8.0, 1% SDS, 1% Triton X-100, 1% NP-40, 1% Tween 20, 1% sodium deoxycholate, 50
mM NaCl, 10 mM DTT, 5 mM EDTA, 1% (w/v) glycerol, 1x cOmplete protease inhibitor tablet, 40 mM
2-chloroacetamide (CAA)). Lysis was conducted by trituration with a 23-gauge needle, incubated at 95 °C
for 5 min, cooled to RT for 10 min, sonicated on ice for 12x 5 s bursts with 5 s intervals and cleared at
16,0009 for 10 min at 4 °C. Protein concentration was estimated by BCA assay, Pierce 660nm Protein
Assay, or NanoDrop 2000 (Thermo Scientific) at 280 nm.

Urea-based lysis was performed in-flask with urea buffer (8 M Urea, 50 mM Tris-HCI pH 8.0, 75 mM
NaCl, 1 mM EDTA, 1x cOmplete protease inhibitor) and lysate snap-frozen in liquid nitrogen. Defrosted
lysate was triturated 20x on ice and cleared at 16,000g for 10 min at 4 °C. Protein concentration was
estimated by BCA assay according to manufacturer’s instructions. Protein was reduced using 5 mM DTT
for 45 min at 25 °C and alkylated with 10 mM CAA for 45 min at 25 °C.

‘SPEED'’ lysis was performed as described previously (1). Briefly, an aliquoted cell pellet was lysed
in 100% TFA, neutralised in 2 M Tris, and reduced and alkylated with 10 mM DTT and 40 mM CAA. The
lysate was diluted 1:1 with water and precipitated according the SP4 protocol below with 10:1 glass
bead:protein ratio.

Preparation of complex lysates. Whole tissue homogenates of mouse heart and lungs were prepared
from 3x washed organs on ice using a gentleMACS tissue dissociator (Miltenyi Biotec) in PBS to single-
cell suspensions using the recommended setting for each organ and centrifuged at 300g for 3 min at 4
°C. Pellets were lysed in SP3 lysis buffer and handled as described above, using additional sonication
and no trituration. FFPE cross sections were incubated twice in xylene for 2 min, washed sequentially
with 90, 70, 50, 70, 90, and 100% ethanol, incubated in xylene for 5 min and air dried. Tissue was
solubilised in SP3 lysis buffer using a Bioruptor sonicator (Diagenode) for 22.5 min (15 cycles: 1 min on,
30 s off) at the highest setting at 4 °C. Lysates were incubated for 1 h at 99 °C. The samples were
returned to the Bioruptor and the 1 h incubation was repeated. Lysates were cleared at 16,0009 for 5 min
and the supernatant was quantitated, reduced and alkylated, as above, for SP3 and SP4 processing. For
whole Drosophila melanogaster homogenates, adult w8 flies were transferred to a 1.5

mL microcentrifuge tube and immobilized by placing them at 4 °C for 5 min. The flies were then
solubilised in ice-cold SP3 lysis buffer using a 1.5 mL tube-compatible pestle (Bel-Art, F65000-0006) and
the lysate cleared twice at 16,0009 for 10 min at 4 °C. Lysates were handled as above for SP3 and SP4.
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Bead preparation. SpeedBeads magnetic carboxylate-modified particles (catalogue no.
45152105050250 and 65152105050250) were mixed 1:1, washed 3 times using Milli-Q® water, and
resuspended at 50 mg/mL.

Silica beads/glass spheres (9—13 ym mean particle diameter, catalogue no. 440345) were
suspended at an initial concentration of 100 mg/mL in Milli-Q water, washed with 100% ACN and 100 mM
ammonium bicarbonate (ABC), and at least twice more with water. With each wash, the beads were
pelleted by centrifugation at 16,0009 for 1 min and the supernatant discarded. Of note: approximately
50% of the beads were buoyant and did not pellet, and were carefully removed over the course of these
wash steps. Metal filings were noted to be a contaminant in the beads and can either be removed by
magnet or acid wash, but did not impact any analyses. The beads were then resuspended in the initial
suspension volume at 50 mg/mL (given ~50% were retained) in Milli-Q water. Alternatively, the beads
were resuspended in 100% ACN at a concentration of at least 2.5x the protein concentration (detailed in
the protocol) to allow simultaneous addition of beads and ACN, ensuring uniform bead suspension during
aggregation and removing the need to add additional volumes.

SP3/SP4 protein aggregation/precipitation. Lysates were aliquoted into Protein LoBind tubes for each
method and replicate. For SP4, 0.5 mL tubes were used (where volumes allowed) to give the densest
pellet. Either 10:1 bead:protein ratio, or the equivalent volume of Milli-Q water (for the bead-free
experiments, to maintain consistent concentrations), was added to lysates and gently vortex-mixed (< 500
rpm). Samples were handled such that liquid volume was minimised. 100% ACN was added (without
pipette mixing) to a final concentration of 80% and tubes gently vortexed for 5 s. SP3 samples were
incubated at 25 °C for 5 min at 800 rpm on a Thermomixer Comfort and placed on a magnetic rack for 2
min. SP4 samples were centrifuged for 5 min at 16,000g. Supernatants were removed carefully, using the
tube hinge to orientate pellets. Three wash steps were performed with at least twice the total precipitation
reaction volume of 80% ethanol, with buffer added slowly and avoiding disturbing the beads/pellet. Each
wash used either a 2 min magnetic separation (SP3) or 2 min centrifugation at 16,000g (SP4).

For centrifugal SP3, the SP3 protocol was followed replacing magnetic isolation with 5 min and 2
min centrifugation steps at 16,000g.

Proteolysis and peptide isolation. After the final wash, remaining supernatant (bar < 5 uL) was carefully
removed, the protein aggregates resuspended by gently vortexing the pellet in 2100 mM ABC with 1:100
trypsin:protein ratio, and placed in a sonicator bath for 5 min. For the 500 and 5000 pg samples, 1:100
TrypZean (T3568, Sigma-Aldrich) was used in place of trypsin. Samples were incubated for 18 h at 37 °C
at 1000 rpm on a Thermomixer Comfort. Peptide-containing supernatants were isolated by removal of
magnetic beads (magrack, SP3) or beads and insoluble debris (16,000g, SP4) for 2 min.

Peptide quantitation assay. Peptide yields for optimization were determined using the Pierce
Quantitative Fluorometric Peptide Assay (Thermo Scientific) according to manufacturer’s instructions. For
initial optimization, samples were prepared as above, varying acetonitrile concentration, bead:protein
ratio, and centrifugation time while otherwise using 80% ACN, 5/2 min capture/wash centrifugation, and a
10:1 bead:protein ratio. Samples for each condition (n = 4) were digested in 50 pL of 20 mM ABC, and
10 pL were analysed in triplicate. For evaluation of SP3 and SP4 protein input concentrations on peptide
recovery, 50 ug of HEK293 protein was aliquoted (n = 3), diluted from 5 to 0.63 pg/uL, and processed as
described above.

S-Trap, spin filter, and SP4 protein cleanup comparison. To avoid experimental artefacts from buffer
type and peripheral method differences, SP4 and centrifugal filters were adapted to follow the S-Trap
procedure wherever possible. HEK293 lysate was prepared with 5% SDS, 50 mM triethylammonium
bicarbonate (TEAB), sonicated as above, reduced with 5 mM TCEP for 15 min at 55 °C, and alkylated
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with 20 mM CAA for 10 min. For S-Trap, the manufacturer's recommended protocol was followed: 100 pg
was acidified, precipitated, and processed using S-Trap mini columns. For spin filtration, 20 pL (100 pg)
of lysate in was applied to a pre-wetted nylon 0.22 um spin filter and precipitated with 80 pL of ACN,
precipitated captured and washed 3x with 80% ethanol at 6,000g for 1 min for all spins. For SP4-GB

80 pL of 12.5 pg/uL ACN-bead suspension was added to 20 L (100 ug) of lysate and the described SP4
protocol followed. Digests were performed with 5 ug of trypsin and 2 ug of Lys-C in 125 pL of 50 mM
TEAB for 2 h. Recommended S-Trap washes (80 uL of 50 mM TEAB, 0.2% FA, and 50% ACN) were
used during all three methods, for the purposes of consistency. Though notably, this may have led to
avoidable losses for SP4 from additional volumes and need for Iyophilisation steps. Peptide solutions
were lyophilised and reconstituted in 100 pL of 200 mM TEAB.

TMT labelling. For the 100 pug TMT experiments, 50 pL of 100 mM TEAB was used in place of ABC and
both trypsin and Lys-C were added to a 1:100 enzyme:protein ratio. The resulting peptides were isolated
by magnet or centrifugation and reaction vessels washed with 50 pL of 100 mM TEAB. 0.2 mg of TMT
labeling reagent was added to each sample and incubated for 1 h at RT, and treated with 8 pL of 5%
hydroxylamine for 15 min at RT. Labeled peptides were vacuum-concentrated, reconstituted, and pooled.

Peptide pre-fractionation. TMT-labeled peptides were reconstituted in 80 puL 3% (v/v) ACN + 0.1% (v/v)
ammonium hydroxide and resolved using high-pH RP C18 chromatography (XBridge BEH 150 mm x 3
mm ID x 3.5 uym particle, Waters™, Milford, MA) at 0.3 mL/min with a Dionex UltiMate 3000 HPLC system
(Thermo Scientific) at 30 °C. Mobile phases A (2% ACN + 0.1% ammonium hydroxide) and B (98% ACN
+ 0.1% ammonium hydroxide) were used for a gradient of: 0—20 min (3% B), 75 min (30% B), 105 min
(85% B). 70 fractions were collected in a peak-dependent manner and individually lyophilized. Fractions
at the extremes of the chromatogram were subjected to solid-phase extraction (SPE) and orthogonally
concatenated, giving 62 fractions (TMT i) or 28 fractions (TMT ii—iv) for analysis.

LC-MS analysis. Label-free analyses of SP3, SP4-BF, and SP4-GB peptides were acquired using a Q-
Exactive Plus Orbitrap MS (Thermo Scientific) coupled with a Dionex UltiMate 3000 nanoHPLC system
(Thermo Scientific). Peptides were separated on a reversed-phase nanoLC column (150 mm x 0.075
mm; Reprosil-Pur C18AQ, Dr Maisch). For each analysis the equivalent of 100 ng peptides (as a
proportion of protein input) were separated using a 120 min gradient of 5-35% ACN, 0.1% FA with a flow
rate of ~300 nL/min.

Mass spectra were acquired with the following parameters for MS?: resolution 70,000, scan range
350-1,800 m/z, automatic gain control (AGC) target 3x10%, and maximum injection time 50 ms. MS?
spectra for 2+ to 4+ charged species were acquired using: HCD fragmentation, top 10, resolution 17,500,
AGC 5x104, maximum injection time 100 ms, isolation window 1.2 m/z, and normalized collision energy
(NCE) of 27. The minimum AGC target was set at 2x103, which corresponds to a 2x10* intensity
threshold.

TMT-labeled high-pH peptide fractions were analysed by Orbitrap Eclipse MS (Thermo Scientific)
with on-line separation on a reversed-phase nanoLC column (450 mm x 0.075 mm ID) packed with
ReprosilPur C18AQ (Dr Maisch, 3 um particles) at 40 °C. A 60 min (TMT i) or 120 min (TMT ii—iv) gradient
of 3—-40% ACN, 0.1% FA at 300 nL/min was delivered via a Dionex UltiMate 3000 nanoHPLC system.
Mass spectra were acquired in SPS MS?3 mode using a 3 s cycle time with the following settings: MS* —
120k resolution, max IT 50 ms, AGC target 400,000; MS? — IW 0.7 CID fragmentation, CE 35%, max IT
35 ms, turbo scan rate, AGC target 10,000; MS® — HCD fragmentation, CE 55%, 30k resolution, max IT
54 ms, AGC target 250,000.

Data analysis. LC-MS raw files were processed with Proteome Discoverer 2.5 using Sequest HT and
Percolator, searching against UniProt Human Swissprot (UniProtKB 2021_01, canonical) and a PD
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contaminant list (2015_5). Default settings were used, allowing 2 missed tryptic cleavages, with
carbamidomethyl (C, fixed), oxidation (M, variable), acetyl/M-loss/M-loss+acetyl (protein N-term,
variable), and, for the isobaric-labeled experiment, TMT 6-plex (K, peptide N-term, fixed). For ‘complex’
samples, the mouse (Swissprot, canonical) and Drosophila melanogaster (Swissprot and Trembl,
canonical, 7227) proteomes were searched. For FFPE samples, methyl lysine was included as a variable
modification. FTMS and ITMS spectra were searched with 0.02 and 0.5 Da fragment mass tolerances,
respectively. Proteome Discoverer was used to determine protein and peptide identifications (q < 0.01),
CV values, TMT quantitation and protein abundances. TMT ratios were determined without normalization
(to assess technical effects), but corrected for batch-specific isotope impurities, with no imputation,
minimum or missing values used. Minora feature detector was used for label-free quantitation. No
normalization was applied to assess fully technical effects. Default setting were otherwise used.
Proteome Discoverer was also used to assess differential protein recovery with p-values determined by
multiple test-corrected t-test to determine the significance of observations of individual proteins across the
replicates. One-way ANOVA and Tukey multiple comparisons test correction (GraphPad Prism 9.0) were
used to determine significance between protein and peptide identification numbers (summarized in
Figure 1 and Table S1) with two-tailed Welch’s t-test applied to paired analyses. R?values were
determined as the squared Pearson product-moment correlation coefficient using Microsoft Excel. For the
analysis of physicochemical property distributions, one-way ANOVA followed by Dunnett’'s multiple
comparisons test, compared to the background TMT proteome, was performed to assess significant
deviation from an expected distribution. Relative median protein recovery % was determined from the
Proteome Discoverer and TMT-derived abundances calculated for each protein and isobaric label, with
each percentage calculated relative to the highest reporter channel median protein abundance per 6-plex.

The MS proteomics data have been deposited to the ProteomeXchange Consortium
(http://proteomecentral.proteomexchange.org) via the PRIDE partner repository (2) with the dataset
identifier PXD032095 and, for validation work, PXD028736 and PXD028768. Proteomics data are
summarised in Table S1 and detailed in Table S2-S20.

Gene Ontology (GO) term enrichment analysis and functional annotation enrichment was
performed with DAVID version 6.8. An addition analysis was performed with GO-SLIM. Terms were
filtered to include those with Benjamini-adjusted significance (p < 0.05). Transmembrane proteins were
defined by UniProt using the SUBCELLULAR LOCATION terms ‘Single-pass type | membrane protein’,
‘Single-pass type Il membrane protein’, and ‘Multi-pass membrane protein’. For protein solubility analysis,
the UniProt Human Swissprot proteome was submitted to the CamSol Intrinsic tool for the calculation (at
pH 7.0) of protein solubility and generic aggregation propensity, with a score generated for each protein
sequence (3). Hydrophobicity (GRAVY score) was calculated by the PROMPT tool (4), and isoelectric
points from ProteomePI (5).
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Supplementary Methods for SP4 validation work (Figure 3 A-D)

Table S21. Summary of the methodologies used by each validation lab

Lab 1 Lab 2 Lab 3
SP3 user Yes No Yes
Protein input (ug) 1, 10, 250 250 25 50
Sample type Jurkat lysate HEK?293 HEK?293 E14 murine ESC
Final protein conc. (ug/pL) 0.1, 0.5, 1.25 1 2.5 0.5
Replicates n=2/3 n=3 n=3 n=5
Lysis buffer RIPA ‘SP3’ RIPA
Digestion method Trypsin, O/N I Detailed above Trypsin, O/N [Trypsin/Lys-C, 2 h, 70 °C
Other details Acetone: overnight at —20 °C - Rapid digestion buffer
Peptide injection (ng) 100, 1000, 1000 I 1000 100 1000
MS Fusion Lumos QE+ QE HF-X
Data processing Pulsar (Biognosys) PD 2.1 MaxQuant

LAB 1

Lysate preparation (Experiment 1)

Jurkat immortalized human T cell lysate was prepared and diluted with RIPA lysis buffer (150 mM NacCl,
1.0% IGEPAL CA-630, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM HEPES, pH 8.0, Protease inhibitor
cocktail, (Calbiochem set Ill, 539134)) to 1.25 ug/uL. Three different masses of Jurkat protein lysate in
RIPA lysis buffer were prepared: 250 pg (1.25 pg/pL) ,10 pg (0.5 pg/pL), and 1 pg (0.1 pg/plL). Each
experiment was performed as discrete technical triplicates, e.g., with 3 separate aliquots of 250 g of
protein processed for each method.

T In the case of Fig 3A (1 ug, acetone overnight, and SP4-GB), only two experiments are present
due to a technical failure during the injections of the entire 1 ug peptide sample, resulting in no material
remaining for a repeat injection.

Sample preparation (Experiment 1)

Treatment. Cell lysate was reduced with 5 mM DTT (30 min at 25 °C) and then treated with 5 mM
iodoacetamide (30 min, 25 °C in the dark). Proteins were recovered by one of the four methods:

Acetone Precipitation. Proteins were precipitated by adding ice-cold acetone (4x sample volume,
overnight, —20 °C). Protein pellets were obtained by centrifugation (18,000g for 10 min at 4 °C) and
washed (2x) with the same volume of ice-cold 80% acetone/water (with sonication between washes). The
final wash liquid was aspirated, and samples were air-dried for 20 min. Each sample was resuspended in
50 mM HEPES (250 puL for 250 pg and 20 pL for 10/1 pg). Samples were sonicated and vortexed to re-
dissolve the pellet.

Seramag SP3 Beads. A stock of SP3 beads was prepared at 50 mg/mL by combining equivalent volumes
of hydrophobic bead slurry and hydrophilic bead slurry. The resulting slurry was washed (3x) water, (3x)
50 mM HEPES. SP3 beads were added to cell lysate in bead:protein ratio of 10:1 (w/w) and distributed
through gentle pipetting. The volume of the mixture was doubled with absolute ethanol and shaken

(800 rpm for 10 min at RT). Tubes were placed on the magnetic separator and allowed to separate. The
protein—bead aggregates were washed 3x while remaining on the magnetic rack with an equivalent total
precipitating reaction volume of 70% ethanol/water (for 1 pg: 20 pL, 10 pg: 40 L, and 250 pg: 400 pL)
and then gently reconstituted by pipette with 50 mM HEPES to a final concentration of 250 pg (1.0 pg/pL),

10 pg (0.5 pg/pL), and 1 pg (0.1 pg/pL).
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ReSyn HILIC Beads. A stock of MagReSyn HILIC beads (ReSyn Biosciences) was supplied at 50 mg/mL.
The resulting slurry was washed with water (3x) and 50 mM HEPES (3x). ReSyn beads were added to
cell lysate in bead:protein ratio of 10:1 (w/w) and distributed through gentle pipetting. The volume of the
mixture was doubled with 200 MM ammonium formate pH 4.5, 30% ACN mixtures (binding buffer), and
the tubes were shaken (800 rpm for 30 min). Tubes were placed on the magnetic separator and allowed
to separate. The protein—bead aggregates were washed 3x while remaining on the magnetic rack with an
equivalent total precipitating reaction volume of 95% ACN (for 1 pg: 20uL, 10 pg: 40 pL and 250 ug: 400
pL) and then gently reconstituted by pipette with 50 mM HEPES to a final concentration of 250 g

(1.0 pg/pL), 10 pg (0.5 pg/pL), and 1 pg (0.1 pg/pL).

Glass Beads. 100 mg of glass beads was distributed in 1 mL of Ultrapure water. This slurry was vortexed
and centrifuged (16,0009 for 2 min at 4 °C). The buoyant beads were gently aspirated to leave a glass
bead pellet. This process was repeated with ACN (1x), 50 mM HEPES (1x) and Ultrapure water (2x). On
the final wash, beads were resuspended in 1 mL of Ultrapure water, and a bead concentration of 50
mg/mL was assumed. Glass beads were added to cell lysate in bead/protein ratio of 10:1 (w/w) and
distributed through gentle vortexing. ACN was added to a final concentration of 80%. Upon addition of
ACN, the mixture was again gently vortexed and then the tubes were centrifuged (160009 for 3 min at

4 °C (2%, with tubes spun in between)). The liquid was gently aspirated, and the beads were washed 3x
with the equivalent volume of 80% ethanol/water (for 1 pug: 50 pL, 10 pg: 100 pL, and 250 pg: 1000 pL).
Beads were reconstituted with additional sonication with 50 mM HEPES to a final concentration of 250 pg

(1.0 pg/pL), 10 pg (0.5 pg/pL), and 1 pg (0.1 pg/pL).

Digestion. For the solely trypsin samples, digestion with trypsin (1:100 enzyme/protein; Promega) was
carried out overnight at 37 °C.

Recovery of Peptides from Beads

Seramag SP3 Beads / ReSyn Beads. Tubes were placed on the magnetic separator and the peptide
mixture was carefully pipetted off and dispensed into a fresh microcentrifuge tube.

Glass Beads. Tubes were centrifuged (16,0009 for 3 min at 4 °C (2x, with tubes spun in between)) and
the peptide mixture was carefully pipetted off and dispensed into a fresh microcentrifuge tube.

Lysate Preparation (Experiment 2)

HEK293T lysate was prepared and diluted with RIPA lysis buffer to 1.25 pg/uL. 250 pg samples were
prepared at 1 pg/uL and each experiment was performed at least in biological triplicate.

Sample Preparation (Experiment 2)

Treatment. Cell lysate was reduced with 5 mM DTT (30 min at 25 °C) and then treated with 5 mM
iodoacetamide (30 min at 25 °C in the dark). Proteins were then recovered by one of the two methods:

Acetone Precipitation. An analogous procedure to Experiment 1 was used up to point of re-dissolving the
pellet. Each pellet was resuspended in the following volumes and buffers: 250 uL of 50 mM HEPES for
trypsin only and 125 pL of 50 mM HEPES with 1 M guanidinium hydrochloride for Lys-C/trypsin. Samples
were sonicated and vortexed periodically to re-dissolve the pellet.

Glass Beads. An analogous procedure to Experiment 1 was used up to point of reconstituting the beads.
Beads were re-distributed via sonication with the following volumes and buffers: 250 pL of 50 mM HEPES
for trypsin only and 125 pL of 50 mM HEPES with 1 M guanidinium hydrochloride for Lys-C/trypsin. Tubes
were centrifuged (16,0009 for 3 min at 4 °C (2x, with tubes spun in between)) and the peptide mixture
was carefully pipetted off and dispensed into a fresh microcentrifuge tube.
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Digestion. For the solely trypsin samples, digestion with trypsin (1:100 enzyme/protein; Promega) was
carried out overnight at 37 °C.

For the Lys-C/trypsin samples, digestion with Lys-C (1:100 enzyme:protein; Wako) was carried out for 4 h
at 37 °C, followed by 1:2 dilution with 50 mM HEPES and a secondary digestion with trypsin (1:100
enzyme:protein; Promega) performed overnight at 37 °C.

Data Acquisition (Both Experiments)

Assuming 100% recovery, 1 ug of each peptide mixture was added to 200 uL of 0.1% formic acid on a
prepared Evotip (Evosep Biosystems) and run on an Evosep One LC connected to the Orbitrap Fusion
MS instrument using 44 min LC-MS/MS gradient in DDA mode as described: the transfer capillary set to
300 °C and 2.2 kV applied to the nanospray needle (Evosep Biosystems). MS! data was acquired in the
Orbitrap Fusion with a resolution of 60k, a max injection time of 20 ms, and an AGC target of 1x108, in
positive ion mode, with profile spectra, over the mass range 375-1200 m/z. A charge state inclusion of
precursors with 2—6+ charges was applied with the MIPS mode (Peptide) active, a dynamic exclusion of
15 s, intensity threshold of 5x104, and isolation carried out in the quadrupole with a width of 1.4 Da. For
fragmentation, HCD energy of 32% was applied and MS?2 were acquired in the Orbitrap with 15k
resolution, max injection time of 22 ms and an AGC target of 1x10°¢ in centroid mode.

Data Analysis (Both Experiments)

For sample-specific spectral library generation, data was acquired from samples from each condition in
data-dependent acquisition (DDA) mode. The data were searched against the human Uniprot database
using the Pulsar search engine (Biognosys AG). The following modifications were included in the search:
Carbamidomethyl (C) (Fixed) and Oxidation (M)/Acetyl (Protein N-term) (Variable). A maximum of 2
missed cleavages for trypsin were allowed. The identifications were filtered to satisfy FDR of 1% on
peptide and protein level. Protein Group, Peptide and Precursor numbers were reported based on the
library generated by the search.

LAB 2

Same as in main methods, with 3x 25 pg (10 uL of 2.5 ug/uL) preparations of HEK293 lysate for SP3,
SP4-BF and SP4-GB.

LAB 3

Comparison of SP3 and SP4 sample processing methods. E14 murine embryonic stem cells were
lysed in RIPA buffer (150 mM NaCl, 1.0% IGEPAL CA-630, 0.5% sodium deoxycholate, 0.1% SDS, 50
mM Tris, pH 8.0) by pipetting and sonication. The lysates were clarified by centrifugation (20,0009 for
10 min at 4°C) and protein concentrations were determined by BCA assay. Aliquots (n =5 per
experimental condition) corresponding to 50 pg of total protein were removed and diluted (1:1) with

20 mM HEPES, pH 8.5 buffer. Reduction with 5 mM TCEP final concentration was carried out at 37 °C for
45 min and alkylation with 20 mM 2-chloroacetamide (30 min at 25 °C). SP3 and SP4 protocols were
carried out as described in the main methods. Following the respective processing methods, rapid
digestion buffer (150 uL per sample, Promega VA 1061) was added followed by 5 ug Lys-C/trypsin
mixture (Promega VA1061). Protein digestion was carried out at 70 °C with shaking (800 rpm) for 2 h.
Samples were removed from the incubator and cooled on ice. Acidification was achieved by addition of
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10% TFA (final concentration: 0.25%) and glass or magnetic beads were removed by centrifugation
(20,0009 for 5 min at 25 °C). Supernatants were transferred to sample vials and analysed by LC-MS/MS.

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Sample aliquots
corresponding to 1 ug total digest were injected on a U3000 RSLC nano-liquid chromatography system
onto a trapping column (Thermo Acclaim Pepmap 100, 0.1 mm x 20 mm, 164564) at a flow rate of
8 uL/min with loading buffer (2% ACN, 0.1% TFA). Following valve switch peptides were eluted onto an
analytical column (Thermo EasySpray column, 0.075 mm x 500 mm, ES803A) by applying a linear multi-
step gradient (buffer A: 5% DMSO, 0.1% formic acid; buffer B: 75% ACN, 5% DMSO, 0.1% formic acid) at
a flow rate of 250 nL/min and a column temperature of 40 °C: 1% B [0-5 min], 22% B [75 min], 42% B
[95 min], 87% B [95.1 min]. The elution gradient was followed by column wash and equilibration steps.
The Q-Exactive HF-X mass spectrometer was operated in positive ionisation mode at a spray
voltage of 1.6 kV. DDA was carried out with a top 30 method, automatic gain control targets of 3x10°
(MS?) and 5x10* (MS?) ions and maximum accumulation times of 25 ms (MS?) and 50 ms (MS?),
respectively. Dynamic exclusion of fragmented precursors was enabled for 50 s.

Data processing and analysis. Raw data files were processed with MaxQuant version 1.6.10.43 and
database searches carried out against a Swissprot Mus musculus database (version 2020.11.11, 17,056
entries). Settings included trypsin digestion with up to two missed cleavages, and a false discovery rate
(FDR) of 1% for peptide spectrum matches and protein identifications. Protein N-terminal acetylation,
methionine oxidation and peptide N-terminal glutamine to pyroglutamate conversion were enabled as
variable modifications and cysteine carbamidomethylation as a fixed modification. The ‘match between
runs’ option was enabled within experimental conditions (SP3 or SP4 digests) with match and alignment
time windows of 0.7 and 20 min, respectively.
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SP4 (Solvent precipitation SP3) protocol

Glass bead preparation (optional):

9-13 um glass spheres/beads

(e.g., https://www.sigmaaldrich.com/catalog/product/aldrich/440345)

Glass beads broadly improved recovery, digestion efficiency and reproducibility, but are not required

Suspend 100 mg in 1 mL of Ultrapure water, vortex until suspended fully, and pellet at > 500g for 1 min.

Of note: approximately 50% of the beads are buoyant, and will not pellet, and should be removed over the course of these
wash steps. Additionally, small amounts of metal in the beads can be removed by magnet or acid wash but had no effect on
the performance of the beads. Larger scale preps are possible but may require additional washes due to buoyant beads.
Resuspend, vortex and wash with = 1 mL of: 100% acetonitrile (ACN) (1x), 100 mM ABC* (1x), and Ultrapure
water (= 2x) ensuring no unpelleted beads remain. * or equivalent digestion buffer.

Then either:

A. Resuspend beads in 0.9 mL of or e B. Resuspend beads in 0.9 mL acetonitrile to
Ultrapure water to 50 mg/mL. 50 mg/mL (recommended).
given ~50% of beads are retained o Avoids protein dilution from beads in water.

o  Ensures uniform bead dispersion

o Dilute beads to at least 2.5% [protein] (so
bead:protein is 10:1 from 4 volumes of
bead—-ACN suspension)

This will be sufficient to prepare 50 mg of protein—excess can be stored at 4 °C.
(with 0.2% sodium azide, if in water for an extended period)

Lysate/protein solution prep recommendations

SP4 is broadly compatible with the majority of lysis buffers as for SP3 or acetone precipitation
Tested with:
o 5% total detergent ‘SP3 lysis buffer’
= (50 mM HEPES pH 8, 1% SDS, 1% Triton X-100, 1% IGEPAL CA-630, 1% Tween 20, 1% sodium
deoxycholate, 50 mM NaCl, 5 mM EDTA, 1% (v/v) glycerol, and 1x protease inhibitors)
o 8 Murea (diluted to 2 M prior to ACN addition)
o  TFA/Tris diluted 1:1 with water as described for the ‘SPEED’ method
For best results with SP4, protein concentration should be as high as possible (0.25-5 pg/uL).
o For lower concentrations or where highest possible recovery is required, longer precipitation reactions, carboxylate-
modified beads, pre-chilled ACN, and centrifugation at 4 °C may help yields.

DNA shearing (e.g., by sonication), protease inhibitors, & lysate clearance are recommended.

SP4 protocol recommendations

The use of the smallest possible tube will help create a denser pellet, e.g., 500 uL tube for samples of less than
50 pL.

Liquids should be kept low in the tube, with losses/contamination possible from tube walls/lid.

Set vortex to < 500 rpm for very gentle mixing.

Pipette ACN directly into the sample to ensure rapid mixing, but do not touch the ACN-sample mix with the tip.

Use the tube hinge to orientate the location of the pellet (fixed angle rotors).
o Initially orientate the tube hinge inwards during the pellet precipitation and turn 180° after 2.5 min will give a denser
pellet and less risk of loss from fragile wall adhesion.

During wash removals, avoid touching the tube walls with the tip as precipitation may occur on them, pipette
slowly and avoid agitating the pellet.

If adding beads, ensure they maintain a uniform suspension in water/ACN by pipetting up and down at least once
between additions.

Organic solvent for aggregation/washes appears interchangeable between ethanol, ACN, IPA, & acetone (Ref. 2).
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SP4 Protocol

1. Aliquot reduced/alkylated protein mixture/lysate into a fresh LoBind-type microcentrifuge tube.
o Volumes and conditions are given for the example of 10 pg protein in 10 pL of 1 pg/uL lysate.
2. Options (choose one):

2a. Bead-free 2b. Glass beads (in water) 2c. Glass beads (in ACN)
Add 4 volumes of ACN. e Add 50 pg/uL beads (water- (recommended)
o E.g., 40 pL for 10 puL sample suspended) at 10:1 beads:protein e  Adjust beads to 2.5x protein
and vortex. concentration.
o E.g., 100 pg (2 pL) beads o E.g., 2.5 pg/pL for 1 pg/pL
e Add 4 volumes of ACN sample
o E.g.,48puLto 12 puL sample:bead o Add 4 volumes of this ACN:bead
mix suspension.

o E.g., 40 pL for 10 pL sample

Ensure complete mixing (without pipette mixing, e.g., by consistent ACN addition, or < 500 rpm vortex for 5 s).
Centrifuge for 5 min at 500-16,000g.
Remove supernatant by pipetting slowly and remove a consistent volume of 90-95%. Avoid disturbing beads/pellet.

E.g., for a 50 pL total precipitation reaction remove 45 pL
6. Wash with 80% ethanol, volume = 1.5x total precipitation volume (or at least 180 L)
o Pipette gently down the side opposite the hinge/pellet to avoid disturbance, do not vortex/resuspend.
7. Centrifuge for 2 min at 16,000gq.
Remove 90-95% of wash.

E.g., leaving ~5-10 pL during washes
9. Repeat wash steps for a total of 3 washes.
10. Remove >= 95% of final wash.

o For larger volumes a final 2 min spin will help with removal of excess wash.

E.g., leaving < 5 pL after final wash aspiration
11. Add preferred digestion buffer, e.g., 20—100 mM ABC or TEAB (pipette mixing will cause losses)
12. Add preferred digestion enzyme, e.g., trypsin/Lys-C at a 1:10 to 1:100 enzyme:protein ratio.
o A digestion buffer/enzyme master mix will reduce variability and simplify pipetting—keep on ice.
o Use a volume equivalent to ~0.5-2x the total precipitation volume.

E.g., 25-100 pL for 50 pL precipitation reaction
o In-bath sonication (5—-10 min) can help to disrupt the pellet and increase surface area.

o Larger bead-free pellets may require additional agitation to resuspend but keep sample low in tube.
o 18 h digestion consistently worked without pellet resuspension for < 25 pg protein.
13. Incubate in a Thermomixer at 1000 rpm at desired conditions, e.g., for 18 h at 37 °C.
o Beads were compatible with 2 h @ 47 °C using 1:10 trypsin or 2 h @ 70 °C (rapid digestion buffer), ensuring resuspension

Peptide collection

e Centrifuge the peptide mixture at 500—16,000g for 2 min & collect peptide supernatant.

e For maximum recovery, rinse pellet/tube in an equal volume of digestion buffer added above.
o Afinal centrifugation step may be required to ensure no beads are carried over.

e Peptides solution at this stage is clean enough to be:
o Acidified (e.g., by 0.1-1% formic acid or trifluoroacetic acid) for direct LC-MS injection.
o Dried by vacuum concentration to provide near-pure peptides.

S25



Protocol References

1. Hughes CS, Moggridge S, Muller T, Sorensen PH, Morin GB, Krijgsveld J. Single-pot, solid-
phase-enhanced sample preparation for proteomics experiments. Nat Protoc. 2019;14(1):68-85.

2. Moggridge S, Sorensen PH, Morin GB, Hughes CS. Extending the Compatibility of the SP3
Paramagnetic Bead Processing Approach for Proteomics. J Proteome Res. 2018;17(4):1730-40.

3. Dagley LF, Infusini G, Larsen RH, Sandow JJ, Webb Al. Universal Solid-Phase Protein
Preparation (USP(3)) for Bottom-up and Top-down Proteomics. J Proteome Res. 2019;18(7):2915-24.
4, Batth TS, Tollenaere MAX, Ruther P, Gonzalez-Franquesa A, Prabhakar BS, Bekker-Jensen S,

et al. Protein Aggregation Capture on Microparticles Enables Multipurpose Proteomics Sample
Preparation. Mol Cell Proteomics. 2019;18(5):1027-35.

5. Sielaff M, Kuharev J, Bohn T, Hahlbrock J, Bopp T, Tenzer S, et al. Evaluation of FASP, SP3,
and iST Protocols for Proteomic Sample Preparation in the Low Microgram Range. J Proteome Res.
2017;16(11):4060-72.

6. Holger lab (MRC unit) SOP.

S26



	johnston-solvent-2022.pdf
	ac1c04200_si_001.pdf

